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ABSTRACT 

In this study, we have developed a computational method that allows numerical 

calculations of the time dependent compressible Navier-Stokes equations. The current 

results concern a study of flow past a semi-infinite flat plate. Flow develops from given 

inflow conditions upstream and passes over the flat plate to leave the computational 

domain without reflecting at the ' downstream boundary. Leading edge effects are 

included in this paper. In addition, specification of a heated region which gets con- 

vected with the flow is considered. The time history of this convection is obtained, 

and it exhibits a wave phenomena. 
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1. Introduction 

Computational methods applied to the Navier-Stokes equations have been a very important prob- 

lem in the field of aerodynamics. The study continues due to several unanswered aspects of specific 

flow situations, for example, compressible flow in open domains in the presence of a plate. 

The physical problem which initiated this study involved interaction of acoustic waves in the 

boundary layer. Such a phenomenon is important in the study of aerodynamic applications such as tur- 

boprop engine equipped aircrafts. They are known to have high fuel efficiency; unfortunately, they have 

high output of sound energy compared to aircrafts powered by conventional turbofan engines. Scien- 

tists working in the field wanted to understand if the noise from these turboprop engines has any 

favourable effects on the aircraft performance. In particular, do the sound waves interfere in a construc- 

tive sense, with the boundary layer formed during the flight? It is suspected that this phenomena is 

true. It is also suspected that the drag coefficient will change as the of the sound waves change. To 

answer this question, it is essential to have a fundamental study made available; unfortunately, there 

are difficulties. First these problems are hard to investigate in a mathematical sense. Secondly, it is 

difficult even to define acoustic sources which satisfy the field equations which are the set of perturbed 

compressible Navier-Stokes equations. Thus, instead of introducing acoustic sources in the flow, we 

propose to study generation of acoustic sources in some way, that may possibly interact with the boun- 

dary layer. Thus, we have addressed a simpler problem of a time dependent compressible fluid flow in 

which heating is imposed; however, no acoustic sources are introduced externally. 
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While these analyses appear to have been done in a sequence of papers by Rudy and Strikwerda 

[5,61. Bayliss. et a1 [2], and Abarbanel, et al [ l] ,  the results were actually constructed using a previously 

established boundary layer (using the code of Harris [4]) which defined the upstream or inflow boun- 

dary condition. In the current study, the flow, including the boundary layer development, is achieved 

by integrating the Navier-Stokes equations subject to appropriate upstream (inflow) boundary condi- 

tions. That is, the upstream values of density, temperature, and velocity components are prescribed in 

accordance with the physical conditions. At the downstream boundary of the computational domain, 

we eliminate any back flow using the nonreflective boundary condition that was developed by Rudy and 

Strikwerda [6]. If the flow is initialized by constant ambient values, then introducing a flat plate parallel 

to the flow yields the standard boundary layer solution as time increases. However, if one introduces 

different initial conditions in an isolated region, the flow tends to develop waves that pass through the 

computational domain as time increases. It is of interest to understand the nature of such waves. Our 

preliminary results indeed show existence of such waves. At the outset they can be thought of as 

acoustic waves. We plan to investigate the nature of such waves in a continuation of this study. Thc 

main purpose of this paper is to indicate the essential steps in constructing a code for this problem. 

2. Mathematical Formulation 

Let L? be the infinite region in the x-y plane. Let a’ be the region that the plate occupies (see 

Fig. 1). If we denote the x and y components of the velocity by u(x,y,t) and v(x,y,t), the pressure by 

p(x.y,t), the density by p(x,y,t), the total energy by E(x,y,t) and the temperature by T(x,y,t), then we 

seek to solve the initial boundary value problem to determine 

V = [p,pu,pv,EIT in la’ such that, 

- a u +  z + - =  ac 
a t  ax a y  - 

, 

where 

- G =  



, 

t 
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and where the stress tensor components and heat flux are given by 

2 a U  aV 
T x x  = -P + T V ( 2 Z  - -1 aY 

2 a v  aU 
zyy = - p +  p ( 2 -  - -) a y  a x  

av zxy = p ( k  ay  + ax) = '5YX 

aT 
Qx = -K= 

aT 
aY Q = -IC-. Y 

The above equations are obtained when constant specific heats are assumed (calorically perfect gas). 

The boundary conditions are 

u =  u,, v =  0, and p =  p.. as x + --oo 

and, 

u = v = 0 on an' (boundary of the plate). 

The initial conditions (at t = 0) are 

u =  u,. v =  0, p =  p,, T =  T, in Q 

Equation (2.2) specifies the nonreflective condition in an asymptotic limit. This is obtained by 

considering the appropriate inflow Riemann invariants for the inviscid unidirectional flow. For no 

reflection, the inflow variants must be zero and we obtain (2.2). This procedure is due to Hedstrbm [8]. 
An improvement on this condition has been given by Rudy and Strikwerda [6] :  

Here 'e' is a parameter that needs to be chosen optimally and works effectively even if the dis- 

tance is 'finite. The boundary conditions (2.2) and (2.3) are in the nondimensional form; thus the 

governing equations (2.1) need to be cast in the same manner. This procedure is described in the 

Appendix A of this paper. The plan of this paper is as follows: 
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Beginning with the nondimensional form of the equations and boundary conditions, we shall 

describe the numerical procedure in the next section. This will also include the treatment of the boun- 

dary conditions numerically. Finally, the results of computations will be presented. 

3. Numerical Procedure 

The numerical method, commonly known as MacCormack's scheme, consists of an explicit finite 

difference method which is second order accurate in time and space. It is possible to increase the spa- 

tial accuracy of the method using an upgrade of the MacCormack's scheme (Gottleib and Turkel [3]); 

however, the viscous terms that contain the mixed derivatives in both methods are second order accu- 

rate, and thus the fourth order accuracy can be achieved only in the inviscid region. Since the accuracy 

in the viscous region is the most important feature, we are confined only to the second order accurate 

scheme globally. 

For numerical computations, it is essential to truncate the infinite region SZ to one of finite size 

which we will denote by E. An obvious choice is to truncate the region as in Figure 2. 

Let ri be the inflow boundary, To be the outflow boundary, and let Tsl and Tsz denote the upper 

and lower boundaries of the calculation domain respectively. If we assign the origin at the left hand bot- 

tom corner (as in Fig. 2), then the Navier-Stokes equations (2.1) are descretized according to the expli- 

cit two stage difference formula: 

In the absence of body forces such as gravity, the nonhomogeneous terms will be zero. That is, 

- H = 0. In these formulas, 

j-1 
xi = (i - 1)Ax and yj = X A y k  0 1  is N, 0 1  jl M. 

k= 0 

Thus, equations (3.1) and (3.2) require values of 

which are obtained by extrapolating E and G according to the relations (3.3). 
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. 

It is important to note that the flux quantities E and G themselves contain derivatives with respect 

to x and y. Thus, the construction &,j and &,j need to be handled in a special way and they are given in 

Table 1. This is the same procedure given by Anderson, et a1 [9]. 

Predictor 
f. . - f. 

LJ 1- 1.j 

A X  

Corrector 
f. . - f. . 

A X  

1+ 1.J LJ 

Predictor 
f. . - f. . 

2 Ax 
l+l,J 1-l,J 

Corrector 
f. . - f. . 

2 Ax 
l4-1.J 1-1.1 

Table 1. x - derivatives where 'f' denotes 'u,' 'v,' or 'T' 

The y derivatives are handled globally as follows: 

f. . - f .  . 
1.P1 LJ 

AYj  
. . ... above the plate, 

..... below the  plate. 
AYj- 1 

The two differencing formulas in the y direction were motivated by the boundary conditions on 

the plate, which is discussed later. However, the accuracy is possibly decreased, and it requires further 

investigation. 

The above discussion completes the finite difference relations inside the computational domain. 

We also require the differencing relation on the physical and nonreflective boundary conditions men- 

tioned in section 2. 

4. Discrete Form of the Boundary Conditions 

Recall on the inflow boundary Ti, that p, u, and v were specified. In addition we specify T at the 

inflow. While this may be an over specification, this is one of the choices to make the initial value prob- 

lem well-posed. Details are seen in [6]. This translates into 
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(1s j 6  M) 

u . =  u, 1 .J 
V1,j - 0  - 

(4.1) 

In the set of equations (4.1), the quantities with subscripts 00 denote the upstream values and are 

given in Appendix B. On the boundaries Tsl and rs2, the condition v = 0 is imposed to indicate the 

inviscid nature of the flow away from the plate. This, when written in discrete form, is 

v . . =  1.J 0 ( 1 s  is N) (j= 1 or M). (4.2) 

The outflow conditions are the same as that used by Rudy and Strikwerda [6] .  In their work they 

show a set of four outflow boundary conditions against computational efficiency. In this work, the 

choice was the set which is mathematically most consistent but a bit slower in achieving convergence. 

Here we calculate the pressure from the discrete form of the nonreflective condition (2.3) and then cal- 

culate temperature using the equation of state for a gas which is calorically perfect (constant specific 

heats) : 

P = (Y - 1)pT 

The discrete form of the nonreflective condition (2.3) is 

r - 

Using relation (4.3), the temperature is determined by 

The speed of sound, C, is calculated according to (See Appendix A) 

(4.3) 

Finally u,v and p are prescribed by zeroth order extrapolation on the outflow boundary. 

Along the plate, both u and v are zero and the temperature of the plate is maintained at T, . In 

addition it is necessary to impose 2 = 0 ( see [6] ). The discrete forms of these conditions are 
JY 
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where jP indicates the upper boundary of the plate and jP-1 is the lower one. 

The differencing used for y derivatives in the viscous terms is different than that suggested by 

Anderson, et a1 [9]. The reason we give for this change is as follows: the backward difference at jP or 

the forward difference at jP-1 yields duldy = 0 which is not consistent with existing physical conditions 

on the plate (in fact, &lay  = 0 implies no velocity gradients at the plate which means inviscid flow!). 

To overcome this difficulty, we have used forward differencing in the y region above the plate and 

backward differencing in the region below. In  addition to boundary conditions, initial conditions and 

reference values must be specified . 

5. Numerical Results and Discussions 

With the numerical scheme described in the last section, a code was developed. Calculation was 

started from a state of rest with initial conditions p,, u,, v,, and T, . The solution was monitored for 

a change in solution of the order of 

is any of the dependent variables, then convergence was assumed when 

in each dependent variable in the successive calculations. If 

To achieve this convergence, typically 60,000 steps were needed. It is also important to note that 

the Reynold's number used in the calculation is 1.5 x lo5 for the configuration considered with 

L,,f = 1 ft. 

At this point we remark that the time step A t  was chosen well below the stability limit that was 

prescribed by MacCormack [9]. A nondimensional time step of lo-' was chosen for the calculations 

for the meanflow and for the case in which there were no thermal disturbances. Moreover, to capture as 

many points as possible inside the boundary layer while keeping the upper boundary of the calculation 

domain as far away from the plate as possible, stretching was used. The stretching was obtained using 

the following formula, 

(5.1) 
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This stretching was above the plate and was reflected in the plate to get a symmetric grid. The 

plate was assumed to have a thickness of a mesh layer adjacent to it. The value of p used was 1.000001. 

Such a transformation is due to Roberts [lo]. The total number of grid points in the x direction was 60 

and also 60 in the y direction. 

The first case here is to let the flow develop the boundary layer. Mach number for all cases con- 

sidered here was 0.4. The mesh thickness in the x direction was 0.3, and the computational domain has 

an aspect ratio of roughly .95. The tuning parameter at the outflow boundary condition 8 was chosen to 

be 1.1 and was found to be optimal by experimentation. Plate is assumed to have a mesh width in the y 

direction and is thin due to the stretching. The leading edge of the plate is located at the 9th grid point 

in the x direction. Prandtl number was 0.72. Uniform initial conditions were used in the entire compu- 

tational domain and the algorithm was initiated to reach a convergence of the order in 60,000 time 

steps. The result was compared against the incompressible case Blasius’s solution and is given in Figure 

3. The comparison was made at the 25th x- grid point on the plate. We obtained 9 points in the boun- 

dary layer. Numerical values are given in Table 2. 

Since these computations contain the leading edge, and very little is known about this situation in 

the computational literature, it is interesting to see the flow field at the last step of the calculation. We 

chose to present the flow field in the entire computational domain. In Figure 4 we see the u velocity 

component. The valley of the graph is the boundary layer region. The flow is moving from left to right. 

The flanged level indictes the region where the value of u has reached 1, the uniform flow condition. 

At  the leading edge, we see some disturbances as expected. At the trailing edge where we had imposed 

the nonreflective condition, we see some reflections, because the boundary condition is not completely 

nonreflective. This could be improved by a more accurate nonreflective condition, about which unfor- 

tunately very little is known in the literature. Alternatively, it could be improved by stretching the com- 

putational domain at farther distances which will increase the computational time substantially. Settling 

for the current results that we have, we took a closer look at the flow, particularly at the leading edge. 

We opted to look at the crossection through a contour plot, which is shown in Figure 5.  Stagnation 

region is clearly seen from the  figure, and the flow tends to spread at the leading edge. An even more 

interesting feature that we observed is that of the v (y - velocity ) component. This is shown in Figure 

6. As we see above and below the plate, the velocity seems to undergo a cycle in opposite directions at 

the leading edge. A reverse cycle seems to take place at the trailing edge. It suggests that a vorticity pat- 

tern is created at the leading edge and the trailing edge, where the nonreflective condition is imposed. 

Taking a closer look at the crossection through the contours, in Figure 7, we see periodic orbits 

corresponding to the disturbances at the leading edge. They also exist at the trailing edge, but exhibit 

inaccuracies in the nonreflective boundary condition. Such phenomena need further investigation, and 

we are unable to explain it fully in this paper. 
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To investigate the wave phenomena, we initialized a temperature which has a value twice that of 

the ambient value in a small region of 4 mesh size just above the leading edge. As the flow moves the 

temperature certainly gets convected along the flow and finally reaches a steady value. But in this transi- 

tion we suspect that the nature of convection should be of a wave phenomenon, in partcular an acoustic 

one. To understand this transition, we plotted the time history of the temperature, which we saved at 

every step of integration. However, it is known that the numerical scheme itself has its own nature of 

oscillations. To separate this effect, we plotted the time history of the temperature in the same region 

without initializing higher temperature. This is shown in Figure 8. We then computed the time history 

of the heated region, which is shown in Figure 9. It is clear that the time history in the heated region 

has a different frequency of oscillations than the one with no heat, exhibiting a true wave phenomenon. 

Finally we compared the  case of the heated region and the case unheated region in the same graph 

(Figure lo). Clearly we see the oscillations that correspond to the numerical scheme and the ones that 

correspond to the physical situation. In particular, up to the value of time t = .1  , we see a high fre- 

quency oscillation. It should be noted that similar concepts are found in reference [7], where a simple 

driven cavity problem was considered for these purposes. 

It is curious to know what happens to the boundary layer in the presence of the heated region. 

After 60,000 time steps for each case (with and without heated region) we constructed the values of u 

- velocity component within the boundary layer as before. Although the numerical values do not differ 

by a substantial amount; there are differences. The results are given below. 
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TABLE 2 

Boundary Layer Solutions at i = 

0.00000 0.00000 

0.23222 0.23221 

0.45365 0.45372 

0.65929 0.65933 

0.81739 0.8 1739 

0.92020 0.92023 

I 6 I 0.97135 I 0.97131 I 
0.99170 0.99 168 

0.99801 0.99799 

* (0 represents the plate level) 

All our computations were performed on a SUN Microsystem (3/260) with a floating point 

accelerator. Double precision calculations took 65 CPU hours of computation in each case. 

From our computations, it is clear that two important things need to be investigated in the future. 

First, the leading edge singularity needs to be understood further by computational work with a theoret- 

ical backing. Second is of course, the nature of these waves; again to isolate the nature, theoretical 

ideas are needed. While there is a large amount of literature available to interpret these phenomena for 

incompressible flows, we are not aware of satisfactory theoretical work to explain these results for the 

compressible flow situation. We intend to continue this work in the future to answer these questions. 
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Amendix A 

Non dimen sionalization 

\ 
Let L be a characteristic length in the flow domain. Our coordinate distances x and y are nondi- 

mensionalized with respect to this length. We also define reference values for which all of the thermo- 

dynamic and fluid quantities are known. These are denoted by the subscript "ref." We note that these 

reference values and the conditions at negative infinity may very well be the same (but not necessarily). 

With this, we can write 

Some of the above quantities are not independent. The relationships are as follows: 

The equation of state, when subjected to the above nondimensionalization, gets converted €01- 

lows: 

p =  p R T  



- 12 - 

Dropping the bar notation for convenience, 

P = P P T  

Now, 

(Note that we have equated the reference plane and infinity) which yields 

and 

The Navier-Stokes equation takes the following nondimensional form: 

where 

P 
P U  

P V  
E 

PUV - = x y  
- F =  

- G =  

and where the stress tensor components and energy are given by 



I 
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2y_(,au- -) a V  

ax  ay r x x  = -P + Re 

2 p, av  a u  
3 Re  a y  ax Tyy = -p  + --(2- - -) 

T x ~  = A(&+ Re ay av) ax  = 7 YX 

and 

PreP re& CpPref 
, Pr=--. cp Tref 

Pa = Re = 
Pr Re ur",f P ref kref 

In these calculations, we have used pa = p. 

To calculate the speed of sound, 'C,' 

since p = (Y - ~ ) P T  
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Figure 7 
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